메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하현수 (가톨릭대학교) 황병연 (가톨릭대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제21권 제9호
발행연도
2018.9
수록면
1,027 - 1,034 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
CCTV has been known to possess high level of objectivity and utility. Hence, the government has recently focused on replacing low quality CCTV with higher quality ones or even by adding high resolution CCTV. However, converting all existing low-quality CCTV to high quality can be extremely costly. Furthermore, low quality videos prior to CCTV replacement are likely to be of poor quality and thus not utilized correctly. In order to solve these problems, this paper proposes a method to improve videos quality of images using SRGAN(Super Resolution Generative Advisory Networks). Through experiments, we have proven that it is possible to improve low quality CCTV videos clearly. For this experiment, a total of 4 types of CCTV videos were used and 10,000 images were sampled from each type. Those images could then be used for machine learning. The fact that the pre-process for machine learning has been done manually and the long time that required for machine learning seems to be complementary.

목차

ABSTRACT
1. 서론
2. 관련연구
3. SRGAN 기반의 영상 화질 개선 기법
4. 실험 방법 및 결과
5. 결론
REFERENCE

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003597361