메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhammad Zaigham Zaheer (University of Science and Technology) Marcella Astrid (University of Science and Technology) Seung-Ik Lee (Electronics and Telecommunications Research Institute) Ho Chul Shin (Electronics and Telecommunications Research Institute)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
661 - 665 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Unsupervised visual anomaly detection is currently one of the most challenging machine learning problems. Various techniques have been specifically developed for certain limited domains while some are more generic towards a broader scope of applications. This paper aims to investigate a novel solution for general anomaly detection in surveillance videos by modeling patterns and objects that appear normally in the videos and then using this model to detect the anomalous objects by exploiting image reconstruction methodologies. This approach is inspired by the recent progression in development of robust semantic in-painting techniques. For our experiments, Context Encoders are used for the said purpose. Context encoders are proven successful to reconstruct missing holes in images based on the non-hole parts. Our proposed methodology is semi-supervised which means it does not require an annotated dataset however the videos of cases containing normal scenes are required separately to train the system. Various experiments suggest that the proposed methodology can successfully locate potentially anomalous images from the normal ones. This paper discusses in depth the possibilities of adopting such systems for general anomaly detection, pros, cons as well as the limitations of the overall methodology.

목차

Abstract
1. INTRODUCTION
2. DATASET
3. ARCHITECTURE & METHODOLOGY
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538901