메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Huu Nhan Nguyen (Soongsil University) Chanho Lee (Soongsil University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제22권 제1호
발행연도
2018.3
수록면
14 - 20 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of training a convolutional neural network (CNN) is to obtain weight factors that give high classification accuracies. The initial values of hyper-parameters affect the training results, and it is important to train a CNN with a suitable hyper-parameter set of a learning rate, a batch size, the initialization of weight factors, and an optimizer. We investigate the effects of a single hyper-parameter while others are fixed in order to obtain a hyper-parameter set that gives higher classification accuracies and requires shorter training time using a proposed VGG-like CNN for training since the VGG is widely used. The CNN is trained for four datasets of CIFAR10, CIFAR100, GTSRB and DSDL-DB. The effects of the normalization and the data transformation for datasets are also investigated, and a training scheme using merged datasets is proposed.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Hyper-parameters for training CNN
Ⅲ. Experimental results
Ⅳ. Conclusion

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-056-000173894