메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정재한 (아주대학교) 손태식 (아주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제1호
발행연도
2019.2
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 다양한 분야에서 활용중인 딥러닝은 적대적 공격 가능성의 발견으로 위험성이 제기되고 있다. 본 논문에서는 딥러닝의 이미지 분류 모델에서 악의적 공격자가 생성한 적대적 샘플에 의해 분류 정확도가 낮아짐을 실험적으로 검증하였다. 대표적인 이미지 샘플인 MNIST데이터 셋을 사용하였으며, 텐서플로우와 파이토치라이브러리를 사용하여 만든 오토인코더 분류 모델과 CNN(Convolution neural network)분류 모델에 적대적 샘플을 주입하여 탐지정확도를 측정한다. 적대적 샘플은 MNIST테스트 데이터 셋을 JSMA(Jacobian-based Saliency Map Attack)방법으로 생성한 방법과 FGSM(Fast Gradient Sign Method)방식으로 변형하여 생성하였으며, 분류모델에 주입하여 측정하였을 때 최소 21.82%에서 최대 39.08%만큼 탐지 정확도가 낮아짐을 검증하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 딥러닝 분류 학습 모델 및 적대적 샘플 생성
IV. 실험 데이터셋 및 라이브러리
V. 실험 방법 및 결과
VI. 결론 및 향후연구
References

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000474601