메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오성우 (연세대학교) 이한길 (연세대학교) 신지연 (연세대학교) 이정훈 (연세대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제24권 제1호
발행연도
2019.2
수록면
105 - 120 (16page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
세계보건기구(WHO)를 비롯해 세계 각국의 정부기관은 항생제 오남용에 따른 항생제 내성균 감염에 대해 심각하게 경고하며 이를 예방하기 위한 관리와 감시를 강화하고 있다. 하지만 감염을 확인하기 위한 감염균 배양에 수일의 시간이 소요되면서 격리와 접촉주의를 통한 감염확산 방지 효과가 떨어져 선제적 조치를 위한 신속하고 정확한 예측 및 추정방법이 요구되고 있다. 본 연구는 Electronic Health Records에 포함된 질병 진단내역과 항생제 처방내역을 neural embedding model과 matrix factorization을 통해 embedding 하였고, 이를 활용한 딥러닝 기반 분류 예측 모형을 제안하였다. 항생제 내성균 감염의 주요 원인인 질병과 항생제 정보를 embedding하여 환자의 기본정보와 병원이용 정보에 추가했을 때 딥러닝 예측 모형의 f1-score는 0.525에서 0.617로 상승하였고, 딥러닝 모형은 Super Learner와 같은 기존 기계학습 모형보다 더 나은 성능을 보여주었다. 항생제 내성균 감염환자의 특성을 분석한 결과, 감염환자는 동일한 질병을 진단받은 비감염환자에 비교해 J01 계열 항생제 사용이 많았고 WHO 권고기준(DDD)을 크게 벗어나는 오남용 청구사례가 6.3배 이상 높게 나타났으며 항생제 오남용과 항생제 내성균 감염 간의 높은 연관성이 발견되었다.

목차

초록
ABSTRACT
1. 서론
2. 이론적 배경
3. 연구 모형
4. 연구 방법
5. 분석 결과
6. 결론
References

참고문헌 (38)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0