메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gustavo Adrian Ruiz Sanchez (Keimyung University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제24권 제6호(통권 제183호)
발행연도
2019.6
수록면
67 - 72 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a computer vision-based banknote recognition system intended to assist the blind. This system is robust and fast in recognizing banknotes on videos recorded with a smartphone on real-life scenarios. To reduce the computation time and enable a robust recognition in cluttered environments, this study segments the banknote candidate area from the background utilizing a technique called Pixel-Based Adaptive Segmenter (PBAS). The Speeded-Up Robust Features (SURF) interest point detector is used, and SURF feature vectors are computed only when sufficient interest points are found. The proposed algorithm achieves a recognition accuracy of 98%, a 100% true recognition rate and a 0% false recognition rate. Although Korean banknotes are used as a working example, the proposed system can be applied to recognize other countries’ banknotes.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Experiments and results
Ⅴ. Conclusions
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0