메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Buemjun Kim (Pai Chai University) Kyounghee Lee (Pai Chai University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2019 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.11 No.1
발행연도
2019.6
수록면
236 - 239 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Currently, natural user interface technology is actively studied to enable users to communicate with a computer by understanding their ordinary behaviors and expressions. A lot of those researches focus on recognition of human"s motions such as a hand gesture. While most existing motion recognition approaches require special devices such as an infrared camera or a motion sensor, this paper proposes a system employing deep learning technology to recognize a user"s hand gesture from an image in normal real-time video produced by general devices such as a webcam. To enhance the recognition accuracy through deep learning, the proposed system first performs black-white binarization processing of each image to effectively distinguish an area corresponding to a user"s hand. Then those images are used for learning and inference of our convolutional neural network model to distinguish various hand gestures. With our implementation, we performed experiments to recognize some simple hand gestures representing rock-paper-scissors. After sufficient learning with more than 100 images per each gesture, the proposed system could accurately infer meanings of all test images and the degree of confidence was higher than 90%. Our further study could be extending the proposed system to recognize more complex hand gestures such as decimal numbers and alphabets. Finally, it is expected to understand in realtime various connected hand motions such as a sign language.

목차

Abstract
I. INTRODUCTION
II. SYSTEM STRUCTURE
III. IMPLEMENTATION RESULTS
IV. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000919496