메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
잔꾸억후이 (한국산업기술대학교) 김응태 (한국산업기술대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2019 하계학술대회
발행연도
2019.6
수록면
1 - 4 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근에 딥러닝 기술을 적용한 보행자 검출 연구가 활발히 진행되고 있다. 연구자들은 딥러닝 네트워크를 이용하여 보행자 오검출율을 낮추는 방법에 대해 지속적으로 연구하여 성능을 꾸준히 상승시켰다. 그러나 대부분의 연구는 다중 스케일 보행자가 분포되는 저해상도 영상에서 보행자를 제대로 검출하지 못하는 어려움이 존재한다. 따라서 본 연구에서는 기존의 Faster R-CNN 구조를 기반으로 하여 새로운 다중 특징 융합 레이어와 다중 스케일 앵커 박스를 적용하여 보행자 오검출율을 줄이는 MS-FRCNN(Multi-scaleF aster R-CNN) 구조를 제안한다. 제안된 방식의 성능 검증을 위해 Caltech 데이터세트를 이용하여 실험한 결과, 제안된 MS-FRCNN 방식이 기존의 다른 보행자 검출 방식보다 다중 스케일 보행자 검출에서 medium 조건하에 5%, all 조건하에 3.9% 나아짐을 알 수 있었다.

목차

요약
1. 서론
2. 보행자 검출 관련 연구
3. 제안된 보행자 검출 기법
4. 실험 및 고찰
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-000877435