메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
WEI LIU (Konkuk University) WEI LI (Konkuk University) SANGUN PARK (Konkuk University) MEEJEE LEE (Konkuk University) YONG BEOM CHO (Konkuk University)
저널정보
대한전자공학회 대한전자공학회 학술대회 2019년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2019.6
수록면
743 - 750 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the rapid development of science and technology, multimedia technologies such as videos have been widely used in people’s daily life, which have become an indispensable part of our life. With the popularization of 2k, 4k, high-definition video, the traditional 2D video has become increasingly difficult to meet the demands of users. More and more people are inclined to multi-view video of free viewpoint and 3D video of more realistic three-dimensional stereo vision. Multiview video refers to many sets of neighboring video camera shooting from different angles. In order to store and transport it conveniently, the data of Multi-view radio must be efficiently compressed because of it’s massive data collected. MV-HEVC incorporates the inter-view motion compensation functionality into the original HEVC framework so that inter prediction among frames of different views can polish the performance. However, MV-HEVC improves the compression efficiency, meanwhile it also to higher coding complexity. Therefore, it is necessary for multi-view video acceleration algorithms. Now, most scholars are working on the HEVC acceleration algorithm and have achieved a lot. But the research on MV-HEVC is still in it’s infancy. In the paper, we proposed high efficient parallelism solution called Advance Wavefront-based Parallel Solution (AWPS), Which optimized the wpp method to achieve higher intra-frame parallelism.

목차

Abstract
1. Introduction
2. Proposed solution
3. Experimental results
4. Conclusions

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0