메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sumita Nainan (NMIMS-Deemed to be University) Vaishali Kulkarni (NMIMS-Deemed to be University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.4
발행연도
2019.8
수록면
279 - 289 (11page)
DOI
10.5573/IEIESPC.2019.8.4.279

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biometric systems for automatic person recognition (APR) require stringent accuracy parameters. Unimodal systems based on single biometric traits, however, have issues with limited flexibility, noisy data, and intra-class variations, and they are prone to spoof attacks. They hence do not yield the desired accuracy. Multimodal biometric systems compensate for these limitations to a certain extent. This paper attempts to present a novel multimodal biometric framework by combining text-independent voice with the accompanied lip movements as the two biometric traits. Mel frequency cepstral coefficient (MFCC) features are extracted from the voice modality, and a histogram of oriented gradients (HOG) is extracted from the lip movements. Vector quantization (VQ) and the Gaussian mixture model (GMM) are the classifiers employed to create models of the training data. Open-set and closed-set identification techniques are implemented to obtain the APR performance parameters for individual traits. The summation rule (sum rule) was applied to the decisions obtained for individual traits in order to implement a multimodal biometric framework. An accuracy of 98% for the APR was achieved, which is an improvement of almost 15% on the results obtained using individual biometric traits.

목차

Abstract
1. Introduction
2. Overview of the Proposed System
3. Feature Extraction
4. Feature Classification
5. Implementation, Results and Analysis-Phase 1
6. Implementation, Results, and Analysis-Phase 2
7. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0