메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
반태원 (경상대학교) 이웅섭 (경상대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제23권 제8호
발행연도
2019.8
수록면
975 - 980 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 차세대 이동통신 시스템의 핵심 요소 기술 중의 하나로 각광 받고 있는 다중 사용자 다중 안테나 네트워크에서 사용자 선택을 위한 심화 학습 기반 스케쥴링 기법을 제안한다. 제안된 신경망을 학습시키기 위하여 기존의 최적 방식을 통해서 90,000 데이터 샘플을 확보하였으며, 추가적인 10,000 데이터 샘플을 이용하여 최종 학습된 신경망의 과최적화 여부를 확인하였다. 제안된 신경망 기반의 스케쥴링 알고리즘은 초기 학습 시에는 상당한 복잡도와 학습 시간이 필요하지만, 일단 학습이 완료된 이후에는 추가적인 복잡도가 유발되지 않는 장점이 있다. 반면에, 기존의 최적 방식은 매 스케쥴링마다 동일한 복잡도의 계산이 지속적으로 요구된다. 다양한 컴퓨터 시뮬레이션 결과에 따르면, 제안된 심화 학습 기반의 스케쥴링 기법은 10㏈ 보다 낮은 SNR에서는 기존 최적 알고리즘의 약 88~96%에 이르는 평균 전송 속도의 합을 얻을 수 있으며, 10㏈ 이상의 SNR에서는 최적의 평균 전송 속도의 합을 얻을 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 시스템 모델
Ⅲ. CNN 기반의 제안 방식
Ⅳ. 성능 분석
Ⅴ. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0