메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제12권 제12호
발행연도
2014.1
수록면
293 - 301 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 데이터 마이닝에 필요한 클러스터링과정에서 불필요한 정보를 감축하기 위하여 베이지언 사후확률의 신뢰도를 이용한 새로운 척도를 제안한다. 데이터 감축을 위한 속성의 중요도가 클러스터링의 결과에 지배적이기 때문에 많은 속성의 변별력을 향상시키기 위하여 사후확률의 신뢰도에 정보 엔트로피를 적용하였다. 제안된 사후확률을 기반으로 한 러프 엔트로피 척도에 의한 속성의 신뢰도의 중복성은 엔트로피의 자연로그에 의하여 상당히 줄어든다. 따라서 제안된 척도에 의하여 생성된 군집화 알고리즘은 속성값의 변별력을 향상시켜 기존의 리덕트를 최소화하였고, 이는 분할의 효율성을 향상시킬 수 있었다. 제안된 알고리즘의 검증을 위해 패턴분류 문제에 적용되는 ACME 데이터에 대하여 속성간의 변별력, 분할결과에 따른 분할의 순정도를 기존의 알고리즘과 비교 분석하였다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0