메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제54권 제6호
발행연도
2017.1
수록면
1,913 - 1,925 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $R$ be a ring with identity. An ideal $N$ of $R$ is called $ideal$-$symmetric$ (resp., $ideal$-$reversible$) if $ABC \subseteq N$ implies $ACB \subseteq N$ (resp., $AB \subseteq N$ implies $BA \subseteq N$) for any ideals $A, B, C$ in $R$. A ring $R$ is called $ideal$-$symmetric$ if zero ideal of $R$ is ideal-symmetric. Let $S(R)$ (called the $ideal$-$symmetric$ $radical$ of $R$) be the intersection of all ideal-symmetric ideals of $R$. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring $R$, we have $S(M_{n}(R)) = M_{n}(S(R))$ where $M_{n}(R)$ is the ring of all $n$ by $n$ matrices over $R$; (4) For a quasi-Baer ring $R$, $R$ is semiprime if and only if $R$ is ideal-symmetric if and only if $R$ is ideal-reversible.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0