메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제54권 제3호
발행연도
2017.1
수록면
731 - 736 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is well-known that there exists a constant-weight $[s \theta_{k-1},k, $ $ sq^{k-1}]_q$ code for any positive integer $s$, which is an $s$-fold simplex code, where $\theta_{j}=(q^{j+1}-1)/(q-1)$. This gives an upper bound $n_q(k, s q^{k-1}+d) \le s \theta_{k-1} + n_q(k,d)$ for any positive integer $d$, where $n_q(k,d)$ is the minimum length $n$ for which an $[n,k,d]_q$ code exists. We construct a two-weight $[s \theta_{k-1}+1,k, s q^{k-1}]_q$ code for $1 \le s \le k-3$, which gives a better upper bound $n_q(k, s q^{k-1}+d) \le s \theta_{k-1} +1 + n_q(k-1,d)$ for $1 \le d \le q^s$. As another application, we prove that $n_q(5,d)=\sum_{i=0}^{4}{\left\lceil{{d}/{q^i}}\right\rceil}$ for $q^{4}+1 \le d \le q^4+q$ for any prime power $q$.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0