메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제52권 제4호
발행연도
2015.1
수록면
765 - 780 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We consider the problem of characterizing the palindromic sequences <cd−1, cd−2, . . . , c0>, cd−1 6 ≠ 0, having the property that for any K ∈ N there exists a number that is a palindrome simultaneously in K different bases, with <cd−1, cd−2, . . . , c0> being its digit sequence in one of those bases. Since each number is trivially a palindrome in all bases greater than itself, we impose the restriction that only palindromes with at least two digits are taken into account. We further consider a related problem, where we count only palindromes with a fixed number of digits (that is, d). The first problem turns out not to be very hard; we show that all the palindromic sequences have the required property, even with the additional point that we can actually restrict the counted palindromes to have at least d digits. The second one is quite tougher; we show that all the palindromic sequences of length d = 3 have the required property (and the same holds for d = 2, based on some earlier results), while for larger values of d we present some arguments showing that this tendency is quite likely to change.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0