메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제48권 제6호
발행연도
2011.1
수록면
1,285 - 1,325 (41page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We solve the isoperimetric problem, the least-perimeter way to enclose a given area, on various Euclidean, spherical, and hyperbolic surfaces, sometimes with cusps or free boundary. On hyperbolic genus-two surfaces, Adams and Morgan characterized the four possible types of isoperimetric regions. We prove that all four types actually occur and that on every hyperbolic genus-two surface, one of the isoperimetric regions must be an annulus. In a planar annulus bounded by two circles, we show that the least-perimeter way to enclose a given area is an arc against the outer boundary or a pair of spokes. We generalize this result to spherical and hyperbolic surfaces bounded by circles, horocycles, and other constant-curvature curves. In one case the solution alternates back and forth between two types, a phenomenon we have yet to see in the literature. We also examine non-orientable surfaces such as spherical Mobius bands and hyperbolic twisted chimney spaces.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0