메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제28권 제1호
발행연도
2007.1
수록면
162 - 168 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For the past decade, the full-field digital mammography has been widely used for early diagnosis of breast cancer, and computer aided diagnosis has been developed to assist physicians as a second opinion. In this study, we try to predict the breast cancer using both mediolateral oblique(MLO) view and craniocaudal(CC) view together. A skilled radiologist selected 35 pairs of ROIs from both MLO view and CC view of digital mammogram. We extracted textural features using Spatial Grey Level Dependence matrix from each mammogram and evaluated the generalization performance of the classifier using Support Vector Machine. We compared the multi-view based classifier to single-view based classifier that is built from each mammogram view. The results represent that the multi-view based computer aided diagnosis in digital mammogram could improve the diagnostic performance and have good possibility for clinical use to assist physicians as a second opinion.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0