메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제31권 제4호
발행연도
2010.1
수록면
310 - 315 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Estimation of muscle forces is important in biomechanics, therefore many researchers have tried to build a muscle model. Recently, optimization techniques for adjusting muscle parameters, i.e. EMG-driven model, have been used to estimate muscle forces and predict joint moments. In this study, an EMG-driven model based on the previous studies has been developed and isometric and isokinetic contraction movements were evaluated to validate the developed model. One healthy male participated in this study. The dynamometer tasks were performed for maximum voluntary isometric contractions (MVIC) for ankle dorsi/plantarflexors, isokinetic contraction at both 30°/s and 60°/s. EMGs were recorded from the tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and soleus muscles at the sampling rate of 1000 Hz. The MVIC trial was used to customize the EMG-driven model to the specific subject. Once the subject's own model was developed, the model was used to predict the ankle joint moment for the other two dynamic movements. When no optimization was applied to characterize the muscle parameters, weak correlations were observed between the model prediction and the measured joint moment with large RMS error over 100% (r = 0.468 (123%) and r = 0.060 (159%) in 30°/s and 60°/s dynamic movements, respectively). However, once optimization was applied to adjust the muscle parameters, the predicted joint moment was highly similar to the measured joint moment with relatively small RMS error below 40% (r = 0.955 (21%) and r = 0.819 (36%) and in 30°/s and 60°/s dynamic movements, respectively). We expect that our EMG-driven model will be employed in our future efforts to estimate muscle forces of the elderly.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0