메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제29권 제4호
발행연도
2008.1
수록면
323 - 328 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A patient with respiratory disorders such as a sleep apnea is increasing as the obese patient increase on the modern society. Positive Airway Pressure (PAP) devices are used in curing patient with respiratory disorders and turn out to be efficacious for patients of 75%. However, these devices are required for evaluating their performance to improve their performance by the mechanical breathing simulator. Recently, the mechanical breathing simulator was studied by the real time feedback control. However, the mechanical breathing simulator by an open loop control was specially required in order to analyze the effect of flow rate and pressure after operating the breathing auxiliary devices. Therefore the aims of this study were to make the mechanical breathing simulator by a piston motion and a valve function from the characteristic test of valve and motor, and to duplicate the flow rate and pressure profiles of some breathing patterns: normal and three disorder patterns. The mechanical simulator is composed cylinder, valve, ball screw and the motor. Also, the characteristic test of the motor and the valve were accomplished in order to define the relationship between the characteristics of simulator and the breathing profiles. Then, the flow rate and pressure profile of human breathing patterns were duplicated by the control of motor and valve. The result showed that the simulator reasonably duplicated the characteristics of human patterns: normal, obstructive sleep apnea (OSA), mild hypopnea with snore and mouth expiration patterns. However, we need to improve this simulator in detail and to validate this method for other patterns

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0