메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제30권 제5호
발행연도
2009.1
수록면
373 - 380 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In general, Independent component analysis (ICA) is a statistical blind source separation technique, used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maximally independent sources in respective domains. The underlying sources for spatiotemporal data (sequence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the maximally independent spatial sources, deteriorating the temporal sources and vice versa. For such data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the domains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, constrained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The proposed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired independent sources in spatial and temporal domains with no source ambiguity. The performance of the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional maps obtained with the proposed algorithm reveal more activity as compared to SPM.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0