메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의용생체공학회 의공학회지 의공학회지 제30권 제1호
발행연도
2009.1
수록면
56 - 65 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Compton imaging is often recognized as a potentially more valuable 3-D technique in nuclear medicine than conventional emission tomography. Due to inherent computational limitations, however, it has been of a difficult problem to reconstruct images with good accuracy. In this work we show that the row-action maximum likelihood algorithm (RAMLA), which have proven useful for conventional tomographic reconstruction, can also be applied to the problem of 3-D reconstruction of cone-beam projections from Compton scattered data. The major advantage of RAMLA is that it converges to a true maximum likelihood solution at an order of magnitude faster than the standard expectation maximiation (EM) algorithm. For our simulations, we first model a Compton camera system consisting of the three pairs of scatterer and absorber detectors placed at x-, y- and z-axes, and generate conical projection data using a software phantom. We then compare the quantitative performance of RAMLA and EM reconstructions in terms of the percentage error. The net conclusion based on our experimental results is that the RAMLA applied to Compton camera reconstruction significantly outperforms the EM algorithm in convergence rate; while computational costs of one iteration of RAMLA and EM are about the same, one iteration of RAMLA performs as well as 128 iterations of EM.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0