메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제9권 제5호
발행연도
2007.1
수록면
2,097 - 2,107 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this paper is to analyze the efficiency and productivity of the property-liability insurance companies in korea using DEA(data envelopment analysis) model and MPI(Malmquist productivity indices), which are non-parametric measurement methods. To measure the efficiency and MPI of the ten property-liability insurance companies in korea. we use the time-series data for seven years from 1998 to 2004. The empirical results show the following findings. Firstly, total cost inefficiency shows that some of inefficiency exists on the property-liability insurance companies and it reveals that the cause for total cost inefficiency is due to allocative inefficiency rather than technical inefficiency. Secondly, the result of analysis MPI change indicates that some of productivity change exists on the property-liability insurance companies. It indicates that the productivity of the property-liability insurance industry for the analytical period increases because of TE(technical efficiency change) and TECH(technological change). Thirdly, the results show that total cost efficiency is positively related acquisition expense, collection expense and is negatively related operating expenses per employee. Finally, the large-sized insurers have advantage of over the small-medium size insurers from efficiency as well as productivity. We conclude that merger and alliancing with other insurers and other financial institutions may be a critical element for improving of property-liability insurers' efficiency, especially, for small-medium size insurers.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0