메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제7권 제1호
발행연도
2005.1
수록면
61 - 71 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The main purpose of this paper is to make a connection between two regression methods which seemingly appear to be quite different: partial least squares regression (PLSR) and generalized ridge regression (GRR). The former uses latent factors extracted from both and and appears as an iterative algorithm in most literatures, and the latter adds small quantities to the diagonal of prior to inversion to reduce the variance of estimated regression coefficients. We connect the two methods to develop a new regression solution. This can be done by modifying PLSR expression in an approximate form and relating it to GRR expression, which results in a new type of estimates of ridge parameters. An example is given to illustrate the above method and its predictive ability is compared with other common regression methods.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0