메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제16권 제6호
발행연도
2014.1
수록면
2,869 - 2,875 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the genetic association study of complex diseases, we may obtain several continuous phenotypes which are correlated to each other. The purpose of the analysis is to identify the relationship between genetic polymorphism and multiple phenotypes. Performing univariate analysis separately for each phenotype is common, but it has limitations in detecting pleiotropic genes. Its performance tends to deteriorate in the multiple testing problems. In this study, we suggest to employ a canonical correlation biplot (CCB) and a semi-partial canonical correlation biplot (SPCCB) as the multivariate approaches. The CCB summarizes the correlation between linear composites for phenotypes and genotypes. Also, it produces three kinds of graphs which are able to catch the relationship between genotypes, between phenotypes and ultimately between genotypes and phenotypes at a glance. SPCCB is an extension of the CCB by permitting covariates. We show the results of these methods by applying them to a sample genetic data as an illustration.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0