메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제9권 제3호
발행연도
2010.1
수록면
67 - 72 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 음성과 얼굴 정보를 분석하여 자동차환경에서 운전자를 검증하는 기술을 소개한다. 음성정보를 이용한 화자검증을 위해서는 잘 알려진 Mel-scale Frequency Cepstral Coefficients(MFCCs)를 음성 특징으로 사용하였으며, 동영상을 이용한 얼굴검증에 대해서는 AdaBoost를 이용하여 검출된 얼굴 영역에 대해 주성분 분석을 수행하여 데이터의 크기가 현저히 줄어든 특징벡터를 추출하였다. 기존의 화자검증 방식에 비해 본 논문에서는 추출된 음성 및 얼굴 특징들을 Gaussian Mixture Models(GMM)-Supervector기반의 Support Vector Machine(SVM)커넬 방식에 적용하여 운전자의 음성과 얼굴을 효과적으로 검증하는 방식을 제안하였다. 실험결과 제안한 방법은 단순한 GMM 방식이나 SVM 방식보다 운전자 검증성능을 향상시킴을 알 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0