메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기계기술학회 한국기계기술학회지 한국기계기술학회지 제20권 제1호
발행연도
2018.1
수록면
18 - 25 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper presents the novel observation model, called Modified Spherical Signature Descriptor(MSSD), capable of representing 2D image generated from 3D point cloud data. The Modified Spherical Signature Descriptor has a uniform mesh grid to accumulate the occupancy evidence caused by neighbor point cloud data. According to a kind of area such as wall, road, tree, car, and so on, the evidence pattern of 2D image looks so different each other. For the parameter learning of Convolutional Neural Network(CNN) layers, these 2D images were applied as the input layer. The Convolutional Neural Network, one of the deep learning methods and familiar with the image analysis, was utilized for the urban structure classification. The case study on CNN practice was introduced in detail in this paper. The simulation results shows that the classification accuracy of CNN with 2D images of the proposed MSSD was improved more than the traditional methods' one.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0