메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
SK텔레콤 Telecommunications Review Telecommunications Review 제16권 제4호
발행연도
2006.1
수록면
731 - 747 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Most speech enhancement algorithms are based on the awwumption that speech and noise are both Gaussian in the Discrete Cosine Trasform (DCT) domain. For further enhancement of noisy speech in the DCT domain, we consider multiple statistical distrivutios (i.e., Faussian, Laplacian and Gamma) as a set of candidated to model the noise and speech. We first use the Goodness-Of-Fit 1(GOF) test in order to estavlish a set of rules to select from this set of candidates for each DCT component of noisy speech. Our evaluations illustrate that the best candidate varied from frequency to frequency bins depending on the Singal-to-Noise-Ratio (SNR) and the Power Spectral Flatness Measure(PAFM). In particular, the PSFM exhibits a strong relation with the best fit; therefore, we employ a simple recursive estimation of the PSFM in the model selection. The proposed speech engancement algorithm employs a soft earimate of the speech avsence probability(SAP) separately for each frequency bin according to the selected distribution. Both objective and subjective tests are performed for the evaluation of the proposed algorithms on a large speech database, for various SNR values and types of background noise. Our evaluations show that the proposed soft decision scheme based on multiple statistical modeling or the PSFM provides further enhancement compared with recent methods with a comparably low computational cost.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0