메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
중앙대학교 한국전자무역연구소 전자무역연구 전자무역연구 제13권 제2호
발행연도
2015.1
수록면
53 - 69 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This study attempts to address the factors that influence the performance and reuse intention of an e-Trade system. As many of these innovative systems have already been in use for some time, variables explaining modifications to existing models are also considered. This study intends to present a more precise model of the innovation adoption occurring in e-Trade in Korea. Design/Dat/Methodology: To investigate the model proposed in this study, we used a structural equation model (SEM) with AMOS 20.0 software. First, we explored the factors involved through a confirmatory factor analysis (CFA). Second, we tested the measurement model using the SEM. The measurement model was used to examine construct reliability and validity, including convergent and discriminant validities. Findings: Our results provide important insight into e-Trade sites, in terms of understanding the major concerns of companies in the e-Trade context. To explore the relationships among variables, the structural equation model was used. The results show that trust influences performance, while accessibility does not. Conversely, trust has no effect on the intention to reuse e-Trade systems, while accessibility is a significant factor. Moreover, the reuse intention is strongly influenced by performance. Originality/Value: The empirical results of this analysis present managerial and academic implications. The study’s findings will indicate what has to be done to develop and extend the ongoing use of e-Trade, thereby increasing the diffusion of e-Trade systems. The study makes novel contributions to the understanding of the adoption and use of new processes for e-Trade.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0