메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Speaker verification system performance depends on the utterance of each speaker. To verify the speaker,important information has to be captured from the utterance. Nowadays under the constraints of limiteddata, speaker verification has become a challenging task. The testing and training data are in terms of fewseconds in limited data. The feature vectors extracted from single frame size and rate (SFSR) analysis is notsufficient for training and testing speakers in speaker verification. This leads to poor speaker modeling duringtraining and may not provide good decision during testing. The problem is to be resolved by increasingfeature vectors of training and testing data to the same duration. For that we are using multiple frame size(MFS), multiple frame rate (MFR), and multiple frame size and rate (MFSR) analysis techniques for speakerverification under limited data condition. These analysis techniques relatively extract more feature vectorduring training and testing and develop improved modeling and testing for limited data. To demonstrate thiswe have used mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC)as feature. Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) are usedfor modeling the speaker. The database used is NIST-2003. The experimental results indicate that, improvedperformance of MFS, MFR, and MFSR analysis radically better compared with SFSR analysis. Theexperimental results show that LPCC based MFSR analysis perform better compared to other analysistechniques and feature extraction techniques.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0