메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제14권 제5호
발행연도
2018.1
수록면
1,114 - 1,135 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A multiple classification system based on a new boosting technique has been approached utilizing differentbiometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting,palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometrictraits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system iscomprised of three different super-classifiers to individually perform person identification. The individualclassifiers corresponding to each super-classifier in their turn identify different biometric features and theirconclusions are integrated together in their respective super-classifiers. The decisions from individual superclassifiersare integrated together through a mega-super-classifier to perform the final conclusion usingprogramming based boosting. The mega-super-classifier system using different super-classifiers in a compactform is more reliable than single classifier or even single super-classifier system. The system has beenevaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrixfor each of the single classifiers, super-classifiers and finally the mega-super-classifier. The differentperformance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0