메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한산부인과학회 Obstetrics & Gynecology Science Obstetrics & Gynecology Science 제59권 제3호
발행연도
2016.1
수록면
169 - 177 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ObjectiveTo evaluate the risk of emergency cesarean section according to the prepregnancy body mass index (BMI) and gestational weight gain per the 2009 Institute of Medicine guidelines. MethodsA retrospective analysis of data from 2,765 women with singleton full-term births (2009 to 2012) who attempted a vaginal delivery was conducted. Pregnancies with preeclampsia, chronic hypertension, diabetes, planned cesarean section, placenta previa, or cesarean section due to fetal anomalies or intrauterine growth restriction were excluded. Odds ratios (ORs) and confidence intervals (CIs) for emergency cesarean section were calculated after adjusting for prepregnancy BMI or gestational weight gain. ResultsThree-hundred and fifty nine (13.0%) women underwent emergency cesarean section. The adjusted OR for overweight, obese, and extremely obese women indicated a significantly increased risk of cesarean delivery. Gestational weight gain by Institute of Medicine guidelines was not associated with an increased risk of cesarean delivery. However, inadequate and excessive weight gain in obese women was highly associated with an increased risk of emergency cesarean section, compared to these in normal BMI (OR, 5.56; 95% CI, 1.36 to 22.72; OR, 3.63; 95% CI, 1.05 to 12.54; respectively), while there was no significant difference between normal BMI and obese women with adequate weight gain. ConclusionObese women should be provided special advice before and during pregnancy for controlling weight and careful consideration should be needed at the time of vaginal delivery to avoid emergency cesarean section.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0