메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제34권 제6호
발행연도
2018.1
수록면
1,261 - 1,272 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
북극 지역의 대기 온도는 바다 및 해빙, 대기 사이의 에너지 교환에 큰 역할을 하므로 북극 대기 온도를정확하게 파악하는 것은 중요하다. 하지만 현장 관측 자료들은 북극 대기 온도의 공간적인 분포를 나타내는 데에 한계가 있다. 따라서 본 연구에서는 부이(buoy) 자료와 Advanced Microwave Scanning Radiometer 2(AMSR2) 위성자료를 이용하여 기계학습 기반 여름철 대기 온도 추정 모델을 구축하였다. 기계학습으로는 random forest(RF) 및 support vector machine(SVM)을 사용하였으며, AMSR2 관측 시간에 따라 하루 두 번의 대기 온도를 추정하였다. 또한 추정된 대기 온도를 유럽 중기예보센터(European Centre for Medium-Range Weather Forecasts, ECMWF)의 ERA-Interim 재분석자료의 대기 온도와 공간 분포를 비교하였다. 교차 검증 결과 두 가지 기계학습 기법 모두 0.84-0.88의 R2 및 1.31-1.53°C의 RMSE를 보였다. 공간적인 분포에서 IABP 부이 관측 자료가 존재하지 않는 바렌츠해(Barents Sea), 카라해(Kara Sea) 및 배핀만(Baffin bay) 지역에서는 기계학습 모델이ERA-Interim 대기 온도에 비하여 과소 추정하는 경향을 보였다. 본 연구는 경험적인 북극 대기 온도 추정의 가능성과 한계점을 서술하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0