메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제39권 제4호
발행연도
2016.1
수록면
7 - 14 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Unlike most researches that focus on single manufacturer or single buyer, this research studies the cooperation policy for two participants of supply chain such as single vendor and single buyer. Especially, this paper deals with single vendor-single buyer integrated-production inventory problem. If the buyer orders products, then the vendor will start to make products and then the products will be shipped from the vendor to the buyer many times. The buyer is supposed to order again when the buyer’s inventory level hits reorder point during the last shipment and this cycle keeps repeated. The buyer uses continuous review inventory policy and customer’s demand is assumed to be probabilistic. The contribution of this paper is to present a mixed approach and derive its cost function. The existing policy assumes that the size of shipping batch from single vendor to single buyer is increasing, called Type 1, or constant, called Type 2. In mixed approach, the size of shipping batch is increasing at the beginning part of the cycle, and then its size is constant at the ending part of the cycle. The number of shipping for Type 1 and Type 2 in a cycle in mixed approach is determined to minimize total cost. The relationship between parameters, for example, the holding cost per product, the set up cost per order, and the shortage cost per item and decision variables such as order quantity, safety factor, the number of shipments, and shipment increasing factor is figured out via sensitivity analysis. Finally, it is statistically proved that the mixed approach is superior to the existing approaches.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0