메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제47권 제5호
발행연도
2015.1
수록면
624 - 632 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A self-diagnostic monitoring system is a system that has the ability to measure variousphysical quantities such as temperature, pressure, or acceleration from sensors scatteredover a mechanical system such as a power plant, in order to monitor its various states, andto make a decision about its health status. We have developed a self-diagnostic monitoringsystem for an air-operated valve system to be used in a nuclear power plant. In this study,we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression,an artificial neural network, and a support vector machine. After each algorithm performsthe decision process independently, the decision-making module collects these individualdecisions and makes a final decision using a majority vote scheme. With this, we performedsome simulations and presented some of its results. The contribution of this studyis that, by employing more robust and stable algorithms, each of the algorithms performsthe recognition task more accurately. Moreover, by integrating these results and employingthe majority vote scheme, we can make a definite decision, which makes the selfdiagnosticmonitoring system more reliable.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0