메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상익 (한국전기안전공사) 강석우 (한국전기안전공사) 김태원 (한국전기안전공사) 이승수 (강원대학교) 김만배 (강원대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제5호
발행연도
2019.9
수록면
791 - 801 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 다양한 불규칙 아크 파형 때문에, 실제 환경에서는 아크 성능이 저하되는 문제가 있다. 따라서, 기존의 부족한 특징 데이터를 증가시켜, 성능을 개선하는 것이 요구된다. 본 논문에서는 입력신호를 변분 모드 분할을 통해 원신호를 분할한 후 통계적 특징을 추출한다. 변분 모드 분할으로부터 추출한 통계적 특징의 성능이 원신호로부터 얻은 특징보다 개선된 성능을 얻는다. 아크 분류기로 인공 신경망을 이용하고, 14,000개의 학습 데이터에 적용한 결과 VMD의 사용이 약 4%의 아크 검출 성능을 높혔다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 변분 모드 분할
Ⅲ. 제안 방법
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
참고문헌 (References)

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-001242612