메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Changeui Son (Chung-Ang University) Seokmok Park (Chung-Ang University) JaeMin Lee (Chung-Ang University) Joonki Paik (Chung-Ang University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.8 No.5
발행연도
2019.10
수록면
367 - 372 (6page)
DOI
10.5573/IEIESPC.2019.8.5.367

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The meter reading.system field has been researched from conventional methods centered on image processing technology to techniques based on learning methods such as machine learning or deep learning. The biggest problem for meter reading systems based on computer vision is difficulty in recognizing the various kinds of meters. In fact, there are more than five major manufacturers for the meters installed in Korea. There are different meter reading areas, ID regions, and number formats by version. Because of these problems, most of the meter reading is still done hands-on. In this paper, we present an automatic meter.reading system that can work simply and efficiently, compared to existing meter reading systems that need a skilled worker. Our meter reading system consists of three parts: i) detection of meter-reading and ID regions using You Only Look Once (YOLO), ii) digit segmentation for recognition, and iii) convolutional neural network (CNN)-based digit recognition. It is possible to robustly detect and recognize various meter types by using the method presented here. Therefore, it can provide an environment where gas meter checkers can work efficiently without inconvenient procedures.

목차

Abstract
1. Introduction
2. Meter Reading Automation System
3. Experimental Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-001222292