메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제51권 제6호
발행연도
2019.1
수록면
1,616 - 1,625 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Measuring occurrence times of random events, aimed to determine the statistical properties of thegoverning stochastic process, is a basic topic in science and engineering, and has been the subject ofnumerous mathematical modeling approaches. Often, true statistical properties deviate from measuredproperties due to the so called dead time phenomenon, where for a certain time period followingdetection, the detection system is not operational. Understanding the dead time effect is especiallyimportant in radiation measurements, often characterized by high count rates and a non-reducibledetector dead time (originating in the physics of particle detection). The effect of dead time can beinterpreted as a suitable rarefied sequence of the original time sequence. This paper provides a limit theorem for a high rate (diffusion-scale) counter with extendable (Type II)dead time, where the underlying counting process is a renewal process with finite second moment forthe inter-event distribution. The results are very general, in the sense that they refer to a general interarrival time and a random dead time with general distribution. Following the theoretical results, we will demonstrate the applicability of the results in three applications:serially connected components, multiplicity counting and measurements of aerosol spatialdistribution.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0