메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제21권 제4호
발행연도
2019.1
수록면
1,771 - 1,779 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 알파고 이후 딥러닝 연구에 대한 활발한 연구가 진행되고 있다. 딥러닝에는 이미지 분석에 적합한 CNN(convolution neural network), 순차적 자료에 적합한 RNN(recurrent neural network) 모델 등 많은 모델이 존재하는데 그 중 시계열데이터 분석에 적합한 딥러닝 모델을 전형적 시계열데이터인 항공사 데이터(1949년 1월부터 1960년 12월까지 매월 총 국제 항공사 승객 수)에 Box-Jenkins의 ARIMA 모형과 함께 적합시켜 비교 할 것이다. 본 연구에서는 R 프로그램을 이용하여 LSTM(long short-term memory) 순환신경망 모델을 구축하고, ARIMA 모형, Faraway(1998)가 제시한 단순 신경망(neural network) 모형 그리고 Jordan & Elman의 순환신경망 모형과의 적합도를 비교하였다. 모형 비교결과 Elman 모형의 오차제곱합이 0.0128, Jordan 모형의 오차제곱 합이 0.0138, LSTM 모형의 오차제곱합이 0.0165, 신경망 모형은 오차제곱합 0.0212로 ARIMA 모형의 0.0194 에 비해 조금 뒤떨어지는 것으로 나타났다. 결국 Elman 순환신경망 모형이 가장 우수하게 나타났으며 LSTM 모형도 기존 ARIMA 모형과 Faraway의 단순신경망모형 보다 우수한 적합도를 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0