메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제35권 제3호
발행연도
2019.1
수록면
359 - 373 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
소나무재선충병은 우리나라 소나무림에 심각한 위협이 되고 있는 질병이다. 그러나 일반적으로 재선충병의 고사목 관측은 현장조사를 기반으로 하고 있기 때문에 물리적, 경제적 문제가 있어 대규모 삼림을 관측하는데 어려움이 있다. 본 연구에서는 소나무재선충병이 재발한 지역에 무인 항공기를 이용하여 고해상도 영상을 획득하였다. 이후 Artificial Neural Network(ANN), Support Vector Machine(SVM) 감독분류 기법을 통해 소나무재선충병 의심목을 탐지하였고. 감독분류 결과에 대한 정확도를 산출하였다. 또한 접근성이 높은 산림에 대해 감독분류를 실시한 후 현장 조사 결과간의 비교를 통해 정확도의 신뢰성을 검증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0