메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정민영 (연세대학교) 이현수 (연세대학교)
저널정보
한국실내디자인학회 한국실내디자인학회 학술대회논문집 한국실내디자인학회 2019년도 추계학술발표대회 논문집
발행연도
2019.11
수록면
112 - 115 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper suggests Emotional adjective prediction using a deep learning approach. The color is important since colors help us to identify an object and colors have symbols that interact with emotion. It is difficult to design based emotions that emotional color are not sufficient to analyze color design by intuition. Before it will expand color data, it is necessary to verify throughout variety source qualitative and quantitative research. It is difficult to design based emotions that is necessary to verify throughout variety source qualitative and quantitative research. This research focused on a deep learning method for emotional color classification that can replace thousands of people’s cognition. The input of the fusion is given to a support of Python language for image classification. This research has concluded that it is desirable to use Deep learning for classifying the set of color of images and it helps color analysis efficiently. Deep learning makes the quality of universal perception with computation easier for user experience. This research has concluded that it is desirable to use Deep leaning for classifying the set of color of images. ImageNet with convolutional neural network makes the quality of universal perception with Deep leaning easier for user experience. A designer makes color combinations institutionally that is classified using deep learning, and can be analyzed emotion as A is 90 percentage ordinary and B is 50 percentage extraordinary in two minuits for deep learning thousand emotional colors and classifying over one hundreds color palettes. It is expected to use these results of research have implications for color design and analysis.

목차

Abstract
1. 서론
2. 딥러닝
3. 배색의 감성어휘 추출
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-619-000122819