메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은석 (건국대학교) 김원준 (건국대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제6호
발행연도
2019.11
수록면
1,113 - 1,121 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 얼굴의 밝기와 색상 정보를 함께 이용한 합성곱 신경망 기반의 얼굴 위변조 검출 방법을 제안한다. 제안하는 방법은 적층된 합성곱 신경망과 보조 신경망을 이용하여 실제 얼굴과 위변조된 얼굴의 밝기 특징과 색상 특징을 독립적으로 추출한다. 기존의 방법과는 달리, 본 논문에서는 추출된 특징을 단순 결합(Concatenation)하는 것이 아니라 주의 모듈(Attention Module)을 이용하여 적응적(Adaptively)으로 조합할 수 있도록 하였다. 또한, 효과적인 분류기 학습을 위하여 대비 손실함수(Contrast Loss Function)를 새롭게 제안하였는데, 대비 손실함수는 동일 클래스 내의 특징 간의 차이는 최소화 시키고 서로 다른 클래스의 특징 간의 차이는 최대화시킴으로써 특징의 분별력을 높인다. 다양한 실험을 통해 본 논문에서 제안하는 방법이 기존 얼굴 위변조 검출 방법 대비 개선된 성능을 보임을 확인하고 그 결과를 분석한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 방법
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000103493