메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
BYEONG-CHUN SHIN (CHONNAM NATIONAL UNIVERSITY) JAE-HUN JUNG (AJOU UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.23 No.4
발행연도
2019.12
수록면
301 - 327 (27page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The proper orthogonal decomposition (POD) method for time-dependent problems significantly reduces the computational time as it reduces the original problem to the lower dimensional space. Even a higher degree of reduction can be reached if the solution is smooth in space and time. However, if the solution is discontinuous and the discontinuity is parameterized e.g. with time, the POD approximations are not accurate in the reduced space due to the lack of ability to represent the discontinuous solution as a finite linear combination of smooth bases. In this paper, we propose to post-process the sample solutions and re-initialize the POD approximations to deal with discontinuous solutions and provide accurate approximations while the computational time is reduced. For the post-processing, we use the Gegenbauer reconstruction method. Then we regularize the Gegenbauer reconstruction for the construction of POD bases. With the constructed POD bases, we solve the given PDE in the reduced space. For the POD approximation, we re-initialize the POD solution so that the post-processed sample solution is used as the initial condition at each sampling time. As a proof-of-concept, we solve both one-dimensional linear and nonlinear hyperbolic problems. The numerical results show that the proposed method is efficient and accurate.

목차

ABSTRACT
1. INTRODUCTION
2. PROPER ORTHOGONAL DECOMPOSITION
3. POD COLLOCATION FOR HYPERBOLIC CONSERVATION LAWS
4. POST-PROCESSING OF SAMPLE SOLUTIONS
5. NUMERICAL EXAMPLES
6. CONCLUSION
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-410-000107357