메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지현 (Seoil University) 조영임 (Gachon University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제1호(통권 제190호)
발행연도
2020.1
수록면
55 - 61 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥 러닝 기술의 발전과 컴퓨팅 파워 등의 개선으로 인해 비디오 기반 연구는 최근 많은 관심을 얻고 있다. 비디오 데이터가 이미지 데이터와 비교하여 가장 큰 차이는 비디오 데이터에는 많은 양의 시간적, 공간적 정보가 포함되어 있다는 점이다. 이처럼 비디오에 포함된 많은 양의 데이터로 인해 컴퓨터 비전 연구에 있어서 행동 인식은 중요한 연구 과제 중 하나이지만, 비디오와 같이 움직임이 있는 환경에서 인간의 행동 인식은 매우 복잡하고 도전적인 과제이다. 인간에 대한 여러 연구를 바탕으로 인공지능에서는 인간과 유사한 주의(attention)메커니즘이 효율적인 인식 모델이라는 것을 알게 되었다. 이 효율적인 모델은 이미지 정보와 복잡한 연속 비디오 정보를 처리하는 데 이상적이다. 본 논문에서는 이러한 연구배경을 기반으로, 비디오에서 인간의 행동을 효율적으로 인식하기 위해 먼저 인간의 행동에 주목한 후 비디오 행동 인식에 주의메커니즘을 도입하고자 한다. 논문의 주요내용은 두 가지 주의 메카니즘을 기반으로 컨볼루션 신경망을 이용한 새로운 3D 잔류 주의 네트워크를 제안함으로써 비디오에서 인간의 행동을 식별하고자 한다. 제안 모델의 평가 결과 최대 90.7%정도의 정확도를 보였다.

목차

[Abstract]
[요약]
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Method
Ⅳ. Experiments
Ⅴ. Conclusion
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000272280