메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hiba Z Muhammed (Cairo University)
저널정보
한국신뢰성학회 International Journal of Reliability and Applications International Journal of Reliability and Applications 제20권 제1호
발행연도
2019.6
수록면
45 - 64 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The inverted distributions have a wide range of applications in problems related to econometrics, biological sciences, survey sampling, engineering sciences, medical research and life testing problems. In addition, it is employed in financial literature, environmental studies, survival and reliability theory. The main aim of this paper is to define a bivariate generalized inverted Kumaraswamy distribution so that the marginals have generalized inverted Kumaraswamy distributions. And define a bivariate inverted Kumaraswamy distribution as a special case from the bivariate generalized inverted Kumaraswamy distribution. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in explicit forms. Different properties of this distribution such as marginals, conditional distributions and product moments have been discussed. The maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance-covariance matrix are obtained. Bayesian estimators are also obtained for the unknown parameters of this model explicitly. Some simulations to see the performances of the MLEs are performed. One data analysis also has been performed for illustrative purpose.

목차

Abstract
1. INTRODUCTION
2. BIVARIATE GENERALIZED INVERTED KUMARASWAMY DISTRIBUTION
3. BASIC PROPERTIES OF BGIKUM DISTRIBUTION
4. PRODUCT MOMENTS
5. ESTIMATION OF BGIKUM DISTRIBUTION
6. ABSOLUTELY CONTINUOUS BIVARIATE GIKUM
7. DATA ANALYSIS
8. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-323-000370474