메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyung Min Kim (Yeungnam University) Jong Wook Kwak (Yeungnam University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제2호(통권 제191호)
발행연도
2020.2
수록면
31 - 39 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 시계열 데이터를 기반으로 합성 벤치마크를 생성하는 기법을 소개한다. IoT 기기에서 측정되는 많은 데이터는 시간에 따른 수치 변화를 측정하는 시계열적 특성이 있다. 하지만 긴 기간 동안 측정되는 데이터를 일반화된 시계열 데이터로 모델링하기 힘든 문제점이 존재한다. 이런 문제를 개선하기 위해 본 논문에서는 BST-IGT 모델을 소개한다. BST-IGT 모델은 전체 데이터를 시계열 모델링이 쉬운 구간으로 분리하여 생성 데이터를 템플릿으로 수집하고 이를 기반으로 특성을 공유하거나 변형되는 새로운 합성 벤치마크를 생성한다. 제안된 모델링 기법을 이용하여 신규 벤치마크를 생성한 결과, 기존 데이터의 통계적 특성을 유지하는 합성 벤치마크와 다른 벤치마크와의 혼합으로 여러 특성을 가지는 벤치마크의 생성을 수행할 수 있었다.

목차

Abstract
요약
I. Introduction
II. Background Work
III. Motivation
IV. Methodology
V. Experimental Result
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000377895