메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현섭 (동의대학교) 김진덕 (동의대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제2호
발행연도
2020.2
수록면
172 - 178 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 널리 이용되고 있는 동영상 공유 서비스에서는 콘텐츠 추천 시스템이 매우 중요한 요소이다. 콘텐츠 추천을 위해서 일반적으로 사용자 선호도와 동영상(아이템) 유사도를 동시에 고려하는 협업 필터링을 사용하고 있다. 그러한 서비스는 주로 사용자의 검색 키워드와 시청시간과 같은 개인 선호도를 활용하여 사용자의 편의를 도모한다. 또한 동영상에 지정한 키워드를 중심으로 랭킹화한다. 그러나 한정된 키워드만을 이용한 동영상 유사도를 분석한다는 한계가 있다. 이런 경우 지정한 키워드가 아이템을 제대로 반영하지 못하는 경우 그 문제가 심각해진다.
이 논문에서는 교육 동영상으로부터 차별화된 의미를 갖는 모든 단어를 고려하여 유사도를 분석하며, 이런 경우 데이터와 연산의 규모가 방대하기 때문에 빅데이터 클러스터에서 처리하는 방법을 적용한다. 제안한 시스템은 빅데이터 영상 분석을 통해 동영상 공유 서비스 플랫폼의 기본 모듈로 활용될 것으로 기대한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 유사 동영상 추천 시스템
Ⅳ. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000454079