메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태현 (한양대학교) 우성충 (한양대학교) 김태원 (한양대학교)
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제44권 제3호(통권 제414호)
발행연도
2020.3
수록면
165 - 177 (13page)
DOI
10.3795/KSME-A.2020.44.3.165

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
탄소섬유의 전도성은 구조건전성 평가가 필요한 복합재료뿐만 아니라 손상 감지를 위한 특수의복 등 다양한 분야에서 활용되고 있다. 본 연구에서는 탄소-케블라 하이브리드 직물의 손상에 의해 유발되는 전압강하 특성을 결정트리 기반의 랜덤 포레스트 알고리즘에 적용하여 이 같은 손상을 유발한 충격체의 형상을 예측할 수 있는 기법을 제시하였다. 이를 위해 탄소-케블라 하이브리드 직물 시험편을 대상으로 다양한 충격체의 형상과 입사 각도에 따라 낙하 충격 시험을 수행하였으며, 섬유 손상에 의한 전압 강하 정보를 추출하고 이를 랜덤 포레스트 모델에 학습시킴으로써 초기 충격체 형상을 예측할 수 있도록 하였다. CART(Classification and Regression Tree) 통계기법의 지니 지수를 활용하여 충격체 형상 예측 기준 중 중요변수를 분석하였으며 예측 기법의 유효성 검증은 OOB(Out of Bag) 오차 추정치와 3겹 교차 검증을 통해 이루어졌다. 또한, 랜덤 포레스트의 훈련 과정에 포함되지 않은 충격체 미상의 전압 강하 데이터로부터 해당 충격체의 형상을 정확히 예측하였다. 본 연구는 특정 파라미터가 아닌 다량의 사물 신호를 전반적으로 반영하여 머신러닝 기법을 통해 초기 충격체 형상을 예측했다는 점에서 그 의미가 있다.

목차

초록
Abstract
1. 서론
2. 기반 이론
3. 실험
4. 결과 및 고찰
5. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-550-000411935