메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeon-Soo You (Chonnam National University) Hyuk-Ro Park (Chonnam National University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제44권 제1호
발행연도
2020.2
수록면
68 - 74 (7page)
DOI
10.5916/jamet.2020.44.1.68

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Named entity recognition (NER) finds object names in documents or sentences and classifies them into given categories. However, recognizing entity names in natural-language sentences is challenging, as it requires an understanding of various contexts. Recently, many researches have tried to apply deep learning methods to NER and have improved performance. Particularly, the bidirectional long-short-term-memory with conditional random field (bi-LSTM-CRF), which is a recurrent neural network model, is considered the most accurate for NER, as it considers contexts of both directions and is not affected by gradient-vanishing. However, the sequential nature of bi-LSTM-CRF makes the model extremely slow in training and classifying. To overcome this issue of computational speed, we propose a syllable-based Korean NER method using a convolutional neural network with CRF (CNN-CRF). The experiment with three corpora shows that the proposed model achieves a similar level of performance with bi-LSTM-CRF (0.4% improvement); however, it is 27.5% faster than bi-LSTM-CRF.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Model
4. Experiments
5. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-559-000409281