메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태석 (배재대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제20권 제3호
발행연도
2020.3
수록면
267 - 274 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
클릭률(CTR) 예측은 사용자가 주어진 항목을 클릭할 확률을 추정하는 것으로 온라인 광고 수익 극대화를 위한 전략 결정에 중요한 역할을 한다. 최근 CTR 예측을 위해 CNN을 활용하는 시도가 이루어지고 있다. CTR 데이터는 특징 정보가 연관성 측면에서 의미 있는 순서를 갖지 않기 때문에, 임의의 순서로 배열될 수 있다. 하지만 CNN은 필터 사이즈에 의해 제한된 로컬 정보만을 학습하기 때문에 데이터 배열이 성능에 큰 영향을 줄 수 있다. 이 논문에서는 CNN이 수집할 수 있는 모든 로컬 특징 정보를 추출할 수 있는 데이터 배열 집합을 생성하고 생성된 배열들에 대하여 개별 CNN 모듈들이 특징들을 학습할 수 있는 다중 배열 CNN 모델을 제안한다. 대규모 데이터 세트에 대한 실험 결과에 따르면 제안된 모델은 기존 CNN 대비 AUC의 RI에서 22.6% 상승 효과를, 제안된 배열 생성 방법은 임의 생성 방법보다 3.87% 성능 향상을 달성하였다.

목차

요약
Abstract
I. 서론
II. 관련 연구
III. 제안한 방법론
IV. 성능 분석
V. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-310-000509430