메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장영진 (강원대학교) 이현구 (강원대학교) 왕지현 (엔씨소프트) 이충희 (엔씨소프트) 김학수 (건국대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.4
발행연도
2020.4
수록면
416 - 421 (6page)
DOI
10.5626/JOK.2020.47.4.416

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계독해 시스템은 컴퓨터가 주어진 단락을 이해하고 질문에 대한 답변을 하는 질의응답 시스템이다. 최근 심층 신경망의 발전으로 기계독해 시스템의 연구가 활발해지면서 주어진 문서가 아닌 검색모델의 결과에서 정답을 찾는 연구(오픈 도메인 기계독해 시스템)가 진행되고 있다. 하지만 오픈 기계독해 시스템은 검색 모델이 정답을 포함하는 단락을 검색해오지 못할 경우, 질문에 대한 답을 할 수 없다. 즉, 오픈 도메인 기계독해 시스템의 성능은 검색 모델의 성능에 종속된다. 따라서 오픈 도메인 기계독해 시스템이 높은 성능을 기록하기 위해서는 높은 성능의 검색 모델이 요구된다. 검색 모델의 성능을 높이기 위한 기존 연구는 질의 확장과 재순위화 등을 통해 연구되었으며, 본 논문에서는 심층 신경망을 이용한 재순위화 방법을 제안한다. 제안 모델은 다중 작업 학습 기반 문장 유사도 측정을 통해 검색 결과(단락)를 재순위화하고, 자체 구축한 58,980 쌍의 기계독해 데이터의 실험 결과로 기존 검색 모델 성능과 비교하여 약 8%p(Precision 1 기준)의 성능 향상을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문장 유사도 기반 재순위화 모델
4. 실험
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0